Evolutionary Regression Modeling with Active Learning: An Application to Rainfall Runoff Modeling
نویسندگان
چکیده
Many complex, real world phenomena are difficult to study directly using controlled experiments. Instead, the use of computer simulations has become commonplace as a feasible alternative. However, due to the computational cost of these high fidelity simulations, the use of neural networks, kernel methods, and other surrogate modeling techniques has become indispensable. Surrogate models are compact and cheap to evaluate, and have proven very useful for tasks such as optimization, design space exploration, visualization, prototyping, and sensitivity analysis. Consequently, there is great interest in techniques that facilitate the construction of such regression models, while minimizing the computational cost and maximizing model accuracy. The model calibration problem in rainfall runoff modeling is an important problem from hydrology that can benefit from advances in surrogate modeling and machine learning in general. This paper presents a novel, fully automated approach to tackling this problem. Drawing upon advances in machine learning, hyperparameter optimization, model type selection, and sample selection (active learning) are all handled automatically. Increasing the utility of such methods for the domain expert.
منابع مشابه
Application of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)
Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model tree...
متن کاملModeling Ghotour-Chai River’s Rainfall-Runoff process by Genetic Programming
Considering the importance of water and computing the amount of rainfall runoff resulted from precipitation in recent decades, using appropriate methods for predicting the amount of runoff from rainfall date has been really essential. Rainfall-runoff models are used to estimate runoff generated from precipitation in the catchment area. Rainfall-runoff process is totally a non-linear phenomenon....
متن کاملModeling Ghotour-Chai River’s Rainfall-Runoff process by Genetic Programming
Considering the importance of water and computing the amount of rainfall runoff resulted from precipitation in recent decades, using appropriate methods for predicting the amount of runoff from rainfall date has been really essential. Rainfall-runoff models are used to estimate runoff generated from precipitation in the catchment area. Rainfall-runoff process is totally a non-linear phenomenon....
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملRainfall-runoff process modeling using time series transfer function
Extended Abstract 1- Introduction Nowadays, forecasting and modeling the rainfall-runoff process is essential for planning and managing water resources. Rainfall-Runoff hydrologic models provide simplified characterizations of the real-world system. A wide range of rainfall-runoff models is currently used by researchers and experts. These models are mainly developed and applied for simulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009